Simulating ozone in the near-tropopause region with the GMI combined model of the stratosphere and troposphere

David B. Considine, LaRC
Peter S. Connell, LLNL
Jennifer A. Logan, Harvard University

Study Goals:

- Evaluate capability of combined strat/trop CTM to reproduce observed near tropopause ozone distributions
- Evaluate model physicochemical processes regulating near-tropopause ozone distributions

Motivation

- Near tropopause region is important, complex, and poorly understood
 - Insufficient measurements to build global picture
 - Modeling region requires tropopause-spanning model
- Anticipated new measurement capability in region (AURA) will drive increased scrutiny
- Need to develop and evaluate appropriate global modeling capability in preparation for new measurements
- Logan profile ozone database provides unique opportunity for evaluation of near tropopause region.

Logan Ozonesonde Climatology

- Monthly averaged ozone profiles referenced to thermal tropopause (lapse rate, not cold point tropopause)
- Profiles interpolated to 1 km resolution before averaging
- Range: -6 km to +6 km (sometimes +12 km)
- Includes standard deviation and number of soundings for each monthly average
- Sonde data from 24 sites: 8 tropical, 11 midlatitude,
 5 high latitude
- Sondes accumulated between 1978 and 2002, but stations differ in time periods and number of sondes in average
 - Reference: Logan, J., An analysis of ozonesonde data for the troposphere: Recommendations for testing 3-D models and development of a gridded climatology for tropospheric ozone, JGR 104, 16,115-16,149, 1999.

GMI combined strat/trop model description

- Chemistry and transport model
- NCAR MACCM3 GCM meteorological data
- 5° lon x 4° lat x 52 hybrid σ-P levels, .0047 hPa top
- Vertical resolution ~1.2 km at tropopause
- Wet and dry deposition, and convective scavenging params
- Lin and Rood flux-form semi-Lagrangian advection
- 125 species combined strat/trop chemical mechanism including inorganic chlorine & bromine, NMHCs, 322 thermal reactions, 82 photolytic decompositions, Type Ia (NAT) and II (ice) PSCs, & background LBS
- SMVGEAR II chemical solver
- Kawa lookup table clear sky photolysis coefficients to ground
- Climatological water vapor in strat, met field water vapor in trop
- Model run for 3 years, 3rd year analyzed

Conclusions

- 1. GMI combined model typically overestimates O3 mixing ratios and gradients in near-tropopause region, both above and below tropopause
 - Best agreement in tropical lower stratosphere
 - Worst agreement in high lat upper troposphere
 - Consistent with excessive STE
 - Vertical resolution/finding tropopause height matters
- 2. Be-7 above/below tropopause ratios compared to RANDAB observations also consistent with excessive STE
 - MACCM3 has largest ratios and is likely to be best of 3 std met fields
- 3. Comparison with RAQMS suggests higher resolution/different treatments of vertical transport could produce better UT results
- 4. Model reproduces observed seasonal cycle of ozone at mid & high latitudes when expressed as % of annual average. Tropical agreement OK